The Spectrum of Independence

Vera Fischer

University of Vienna

November 16th, 2020

Independence Number

A family $\mathscr{A} \subseteq [\omega]^{\omega}$ is said to be independent for any two non-empty finite disjoint subfamilies \mathscr{A}_0 and \mathscr{A}_1 the set

$$\bigcap \mathscr{A}_0 \backslash \bigcup \mathscr{A}_1$$

is infinite. It is a maximal independent family if it is maximal under inclusion and

$$i = \min\{|\mathscr{A}| : \mathscr{A} \text{ is a m.i.f.}\}$$

Boolean combinations

- Functions $h: \mathcal{A} \to \{0,1\}$ where $|dom(\mathcal{A})| < \omega$ and $\mathcal{A}^h = \bigcap \{A: A \in h^{-1}(0)\} \cap \bigcap \{\omega \setminus A: A \in h^{-1}(1)\}.$
- $FF(\mathscr{A}) = \{h : \mathscr{A} \to \{0,1\} \mid |\operatorname{dom} h| < \omega\}.$

 $\{\mathscr{A}^h: h \in \mathsf{FF}(\mathscr{A})\}$ is the collection of all Boolean combinations of \mathscr{A} .

Countable independent families are not maximal

Let \mathscr{A} be a countable independent family and let $\{h_n\}_{n\in\omega}$ be an enumeration of $\mathsf{FF}(\mathscr{A})$ so that each element appears cofinally often. Inductively define $\{a_{2n}, a_{2n+1}\}_{n\in\omega}$ so that

$$a_{2n}, a_{2n+1}$$
 belong to $\mathscr{A}^{h_n} \setminus \{a_{2k}, a_{2k+1}\}_{k < n}$.

Then $A = \{a_{2n}\}_{n \in \omega}$ is independent over \mathscr{A} .

Fichtenholz-Kantorovich

Let $C = [\mathbb{Q}]^{<\omega}$ and for $r \in \mathbb{R}$ let

$$A_r = \{a \in C : a \cap (-\infty, r] \text{ is even}\}.$$

Then whenever S, T are finite disjoint sets of reals, the set

$$\bigcap_{r\in\mathcal{S}}A_r\cap(C\setminus\bigcup_{r\in\mathcal{T}}A_r)$$

is infinite. Thus, there is always a m.i.f. of size ε .

$\mathfrak{r} \leq \mathfrak{i}$

Let \mathscr{A} be a m.i.f. and $X \in [\omega]^{\omega} \setminus \mathscr{A}$. By maximality of \mathscr{A} , $\exists h \in \mathsf{FF}(\mathscr{A})$ such that either $\mathscr{A}^h \cap X$ or $\mathscr{A}^h \setminus X$ is finite. Thus \mathscr{A}^h is not split by X.

 $\mathfrak{d} \leq \mathfrak{i}$

If $\mathscr{D} \subseteq {}^{\omega}\omega$ is such that for each $h \in {}^{\omega}\omega$ there is $g \in \mathscr{D}$ such that $h(n) \leq g(n)$ for all but finitely many n, then $|\mathscr{D}| \leq i$.

i vs. u

In the Miller model $\mathfrak{u}<\mathfrak{i}$, while Shelah devised a special ${}^\omega\omega$ -bounding poset the countable support iteration of which produces a model of $\mathfrak{i}=\aleph_1<\mathfrak{u}=\aleph_2.$

a vs. u

In the Cohen model $\mathfrak{a}<\mathfrak{u}$, while assuming the existence of a measurable one can show the consistency of $\mathfrak{u}<\mathfrak{a}$. The use of a measurable has been eliminated by Guzman and Kalajdzievski.

a vs i

In the Cohen model $\mathfrak{a} < \mathfrak{i} = \mathfrak{c}$.

Question:

Is it consistent that i < a?

... and once again Maximality

 $\forall X \in [\omega]^{\omega} \backslash \mathscr{A} \exists h \in \mathsf{FF}(\mathscr{A}) \text{ such that } \mathscr{A}^h \cap X \text{ or } \mathscr{A}^h \backslash X \text{ is finite.}$

Dense maximality

Let \mathscr{A} be an independent family. Then \mathscr{A} is said to be densely maximal if for each $X \in [\omega]^{\omega} \setminus \mathscr{A}$ and every $h \in FF(\mathscr{A})$ there is $h' \in FF(\mathscr{A})$ such that $h' \supseteq h$ and $\mathscr{A}^{h'} \cap X$ or $\mathscr{A}^{h'} \setminus X$ is finite.

Density filter

Let \mathscr{A} be an independent family. Then

$$\mathsf{fil}(\mathscr{A}) = \{ Y \in [\omega]^\omega : \forall h \in \mathsf{FF}(\mathscr{A}) \exists h' \in \mathsf{FF}(\mathscr{A}) \text{ s.t. } h' \supseteq h \text{ and } \mathscr{A}^{h'} \subseteq Y \}$$

is referred to as the density filter of \mathscr{A} .

Definition: Ramsey filter

A *p*-filter $\mathscr F$ is said to be Ramsey if for every partition $\mathscr E=\{E_n\}_{n\in\omega}$ of ω into finite sets such that $\omega\setminus E_n\in\mathscr F$ for each n, there is a set $\{k_n\}_{n\in\omega}$ in $\mathscr F$ such that $k_n\in E_n$ for each n.

Definition: Selective independence

A densely maximal independent family $\mathscr A$ is said to be selective if $fil(\mathscr A)$ is Ramsey.

Theorem (Shelah)

- Selective independent families exists under CH.
- They are indestructible by a countable support iterations and countable support products of Sacks forcing.

Corollary

It is consistent that i < c.

Definition

Let \mathbb{P} be the partial order

- of all pairs (\mathscr{A}, A) where \mathscr{A} is a countable independent family and $A \in [\omega]^{\omega}$ such that for all $h \in FF(\mathscr{A})$ the set $\mathscr{A}^h \cap A$ is infinite;
- with extension relation defined as follows

$$(\mathcal{B}, B) \leq (\mathcal{A}, A)$$
 iff $\mathcal{B} \supseteq \mathcal{A}$ and $B \subseteq^* A$.

Lemma (CH)

The partial order \mathbb{P} is countably closed and \aleph_2 -cc. Moreover, if G is \mathbb{P} -generic, then $\mathscr{A}_G = \bigcup \{\mathscr{A} : \exists A(\mathscr{A},A) \in G\}$ is a selective independent family.

More precisely

- 𝒜_G is densely maximal;
- fil(\mathscr{A}_G) is generated by $\{A:\exists \mathscr{A}(\mathscr{A},A)\in G\}\cup \mathbf{Fr};$
- fil(\(\mathcal{A} \)) is Ramsey.

Definition: Spectrum of Independence

$$\mathfrak{sp}(\mathfrak{i}) = \{ |\mathscr{A}| : \mathscr{A} \text{ is a max. ind. family} \}$$

Theorem (F., Shelah)

Assume CH. Let κ be a regular uncountable cardinal. Then

$$V^{\mathbb{S}_{\kappa}} \vDash \mathfrak{sp}(\mathfrak{i}) = \{ \aleph_1, \kappa \}.$$

A-diagonalization filters (F., Shelah)

Let $\mathscr A$ be an independent family. A filter $\mathscr U$ is said to be an $\mathscr A\text{-diagonalization filter if}$

$$\forall F \in \mathscr{U} \forall h \in \mathsf{FF}(\mathscr{A})(|F \cap \mathscr{A}^h| = \omega)$$

and is maximal with respect to the above property.

Lemma (F., Shelah)

If $\mathscr U$ is a $\mathscr A$ -diagonalization filter and G is $\mathbb M(\mathscr U)$ -generic and $x_G = \bigcup \{s: \exists F(s,F) \in G\}$, then:

- \bullet $\mathscr{A} \cup \{x_G\}$ is independent
- ② If $y \in ([\omega]^{\omega} \setminus \mathscr{A}) \cap V$ is such that $\mathscr{A} \cup \{y\}$ is independent, then $\mathscr{A} \cup \{x_G, y\}$ is not independent.

Definition

We say that y diagonalizes \mathscr{A} over V_0 (in V_1) iff

- V_1 extends V_0 , (\mathscr{A} is independent) V_0
- whenever $x \in ([\omega]^{\aleph_0})^{V_0} \setminus \mathscr{A}$ such that $V_0 \vDash \mathscr{A} \cup \{x\}$ is independent, then $V_1 \vDash \mathscr{A} \cup \{x,y\}$ is not independent.

Corollary

If $\mathscr U$ an $\mathscr A$ -diagonalization filter and G is a $\mathbb M(\mathscr U)$ -generic, then $\sigma_G = \bigcup \{s: \exists A(s,A) \in G\}$ diagonalizes $\mathscr A$ over the ground model.

Corollary

Let κ be a regular uncountable cardinal. Then consistently

$$\aleph_1 < \mathfrak{i} = \kappa < \mathfrak{c}.$$

Proof:

Let $\lambda > \kappa$ be the desired size of the continuum. The ordinal product $\gamma^* = \lambda \cdot \kappa$ contains an unbounded subset \mathscr{I} of cardinality κ . Consider a finite support iteration of length γ^* such that along $\mathscr I$ we

- recursively generate a max. independent family of cardinality κ ,
- as well as a scale of length κ ,

and along $\gamma^* \setminus \mathscr{I}$, we add Cohen reals. Then in the final generic extension

$$\aleph_1 < \mathfrak{d} = \kappa \leq \mathfrak{i} \leq \kappa < \mathfrak{c} = \lambda.$$

Question:

Can we adjoin via forcing a max. independent family of cardinality \aleph_{ω} ?

Theorem (F., Shelah)

Assume *GCH*. Let $\kappa_1 < \cdots < \kappa_n$ be regular uncountable cardinals. There is a ccc generic extension in which $\{\kappa_i\}_{i=1}^n \subseteq \mathfrak{sp}(\mathfrak{i})$.

Proof:

Consider a finite support iteration of length γ^* , where γ^* is the ordinal product $\kappa_n \cdot \kappa_{n-1} \cdots \kappa_1$ and elaborate on the previous idea.

Ultrapowers

Let κ a measurable and let $\mathscr{D}\subseteq\mathscr{P}(\kappa)$ be a κ -complete ultrafilter. Let \mathbb{P} be a p.o. Then $\mathbb{P}^{\kappa}/\mathscr{D}$ consists of all equivalence classes

$$[f] = \{g \in {}^{\kappa}\mathbb{P} : \{\alpha \in \kappa : f(\alpha) = g(\alpha)\} \in \mathscr{D}\}\$$

and is supplied with the p.o. relation $[f] \leq [q]$ iff

$$\{\alpha \in \kappa : f(\alpha) \leq_{\mathbb{P}} g(\alpha)\} \in \mathscr{D}.$$

We can identify each $p \in \mathbb{P}$ with $[p] = [f_p]$, where $f_p(\alpha) = p$ for each $\alpha \in \kappa$ and so we can assume $\mathbb{P} \subseteq \mathbb{P}^{\kappa}/\mathscr{D}$.

Lemma

- The poset $\mathbb P$ is a complete suborder of $\mathbb P^\kappa/D$ if and only if $\mathbb P$ is κ -cc. Thus, if $\mathbb P$ is ccc, then $\mathbb P \lessdot \mathbb P^\kappa/\mathscr D$.
- ② If \mathbb{P} has the countable chain condition, then so does $\mathbb{P}^{\kappa}/\mathscr{D}$.

Lemma

Let $\mathscr A$ be a $\mathbb P$ -name for an independent family of cardinality $\geq \kappa.$ Then

 $\Vdash_{\mathbb{P}^{\kappa}/\mathscr{D}} \mathscr{A}$ is not maximal.

Theorem (F., Shelah, 2018)

Let $\kappa_1 < \kappa_2 < \cdots < \kappa_n$ be measurable witnessed by κ_i -complete ultrafilters $\mathcal{D}_i \subseteq \mathcal{P}(\kappa_i)$. There is a ccc generic extension in which

$$\{\kappa_i\}_{i=1}^n = \mathfrak{sp}(\mathfrak{i}).$$

Proof/Idea:

Let $\gamma^* = \kappa_n \cdot \kappa_{n-1} \cdots \kappa_1$ and for each $j \in \{1, \dots, k\}$ fix an unbounded subset \mathscr{I}_i in γ^* . Along each \mathscr{I}_i

- ullet iteratively generate a max. ind. family of cardinality κ_i
- and for unboundedly many $\alpha \in \mathscr{I}_j$ take the ultrapower $\mathbb{P}_{\alpha}^{\kappa_j}/\mathscr{D}_j$.

Do we need a measurable?

Lemma

Let \mathscr{A} be an independent family and let \mathscr{U} be a diagonalization filter for \mathscr{A} . Let $n \in \omega$ and for each $i \in n$ let $\mathscr{U}_i = \mathscr{U}$. Moreover let $G = \prod_{i \in n} G_i$ be a $\mathbb{P} = \prod_{i \in n} \mathbb{M}(\mathscr{V}_i)$ -generic filter. Then in V[G]:

- \bigcirc $\mathscr{A} \cup \{x_i\}_{i \in n}$ is independent.
- **②** For all $y ∈ (V \setminus \mathscr{A}) \cap [\omega]^{\omega}$ such that $\mathscr{A} \cup \{y\}$ is independent and each i ∈ n, the family $\mathscr{A} \cup \{y, x_i\}$ is not independent.

Claim (GCH)

- Given an arbitrary uncountable cardinal θ , there is a ccc poset, which adjoins a max. independent family of cardinality θ .
- In particular, there is a ccc poset adjoining a maximal independent family of cardinality \aleph_{ω} .

Definition

Fix $\sigma \leq \theta \leq \lambda$, where:

- σ is regular uncountable (the intended value of i),
- λ is of uncountable cofinality (the intended value of \mathfrak{c}).
- Let $S \subseteq \theta^{<\sigma}$ be a well-prunded θ -splitting tree of height σ .
- For each $\alpha < \sigma$, let S_{α} be the α -th level of S.

Recursively define a finite support iteration

$$\mathbb{P}_{\mathcal{S}} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha \leq \sigma, \beta < \sigma \rangle$$

of length σ as follows:

- Let $\mathbb{P}_0 = \{\emptyset\}$, $\dot{\mathbb{Q}}_0$ be a \mathbb{P}_0 -name for the trivial poset.
- Let $\mathscr{A}_0 = \emptyset$ and let \mathscr{U}_0 be an arbitrary ultrafilter extending the Frechét filter. For each $\eta \in S_1 = \operatorname{succ}_S(\emptyset)$, let $\mathscr{U}_\eta = \mathscr{U}_0$ and let

$$\mathbb{Q}_1 = \prod_{\eta \in S_1} \mathbb{M}(\mathscr{U}_\eta)$$

with finite supports.

- In $V^{\mathbb{P}_1 * \dot{\mathbb{Q}}_1}$ for each $\eta \in S_1$ let a_η be the $\mathbb{M}(\mathscr{U}_\eta)$ -generic real.
- Suppose $\alpha \geq$ 2 and in $V^{\mathbb{P}_{\alpha}}$ for all $\eta \in \mathcal{S}_{\alpha}$,

$$\mathscr{A}_{\eta} = \{a_{v} : v \in \mathsf{succ}_{\mathcal{S}}(\eta \upharpoonright \xi), \xi < \alpha\}$$

is independent. For each $\eta \in S_{\alpha}$, let \mathcal{U}_{η} be a \mathscr{A}_{η} -diagonalization filter and let $\mathbb{Q}_{\alpha} = \prod_{\eta \in S_{\alpha}} \mathbb{M}(\mathcal{U}_{\eta})$ with finite supports.

• In $V^{\mathbb{P}_{lpha}*\dot{\mathbb{Q}}_{lpha}}$ for each $\eta\in S_{lpha}$ let a_{η} be the $\mathbb{M}(\mathscr{U}_{\eta})$ -generic real.

Lemma

In $V^{\mathbb{P}_S}$ for each branch $\eta \in [S]$ the family

$$\mathscr{A}_{\eta} = \{a_v : v \in \mathsf{succ}(\eta \upharpoonright \xi), \xi < \alpha\}$$

is a maximal independent family of cardinality θ .

Proof:

Maximality follows from the diagonalization properties and the fact that the length of the iteration is of uncountable cofinality.

Theorem (F., Shelah, 2020)

Assume GCH. Let σ be a regular uncountable cardinal, λ a cardinal of uncountable cofinality such that $\sigma \leq \lambda$. Let

- $\Theta_1 \subseteq [\sigma, \lambda]$ be such that $\sigma = \min \Theta_1$, $\max \Theta_1 = \lambda$,
- and let $\Theta_0 = [\sigma, \lambda] \setminus (\Theta_1 \cup \{\lambda\})$.

If $|\Theta_1| < \min \Theta_0$, then there is a ccc generic extension in which

$$\mathfrak{sp}(\mathfrak{i}) = \Theta_1 \cup \{\lambda\}.$$

Corollary (F., Shelah)

Assume GCH. Any countable set Θ of uncountable cardinals such that $\min \Theta$ is regular and $\sup \Theta = \max \Theta$ is of uncountable cofinality can be realized in a ccc generic extension as the spectrum of independence.

Corollary

Assume GCH and let $C \subseteq \{ \aleph_n \}_{1 \le n < \omega}$. Then there is a ccc generic extension in which

$$\mathfrak{sp}(\mathfrak{i}) = C.$$

Question:

Is it consistent that $i = \aleph_{\omega}$?

Thank you for your attention!

